Skip to content

LLM Models

Sellestial supports multiple Large Language Models (LLMs) across different pipeline kinds.

Available models for classification pipelines:

ModelProviderBest For
openai/o1OpenAIComplex reasoning
openai/o4-miniOpenAIFast, economical
openai/o3OpenAIBalanced performance
openai/gpt-4.1OpenAIHigh accuracy
openai/gpt-4.1-miniOpenAIBalanced
openai/gpt-4.1-nanoOpenAIUltra-fast
gemini/gemini-2.5-proGooglePremium quality
gemini/gemini-2.0-flashGoogleSpeed and cost

Available models for structured data extraction:

ModelProviderBest For
openai/gpt-5OpenAILatest capabilities
openai/gpt-oss-120bOpenAIOpen-source model
openai/o1OpenAIComplex reasoning
openai/o4-miniOpenAIFast, economical
openai/o3OpenAIBalanced performance
openai/gpt-4.1OpenAIHigh accuracy
openai/gpt-4.1-miniOpenAIBalanced
openai/gpt-4.1-nanoOpenAIUltra-fast
gemini/gemini-2.5-proGooglePremium quality
gemini/gemini-2.0-flashGoogleSpeed and cost
gemini/gemini-2.5-flashGoogleFast and efficient

Available models for agent pipelines (generation and validation):

ModelProviderBest For
openai/o1OpenAIComplex reasoning
openai/o4-miniOpenAIFast, economical
openai/o3OpenAIBalanced performance (recommended for validation)
gemini/gemini-2.0-flashGoogleSpeed and cost (recommended for generation)

Available models for sequence content generation:

ModelProviderBest For
openai/o1OpenAIComplex reasoning
deepseek/r1DeepSeekTechnical content
openai/o4-miniOpenAIFast, economical
openai/o3OpenAIBalanced performance
openai/gpt-4.1OpenAIQuality generation
gemini/gemini-2.5-pro-preview-05-06GooglePreview features
gemini/gemini-2.5-proGooglePremium quality
gemini/gemini-2.0-flashGoogleSpeed and cost
Agent Model Configuration

Generation Model:

  • Primary model for reasoning and decisions
  • Default: gemini/gemini-2.0-flash

Validation Model:

  • Reviews and validates outputs
  • Default: openai/o3 or openai/o4-mini
  • Optional: Can disable validation

openai/o1:

  • Complex multi-step reasoning
  • Highest quality outputs
  • Slower processing
  • Higher cost
  • Best for: Critical decisions, complex analysis

openai/o3:

  • Balanced quality and speed
  • Good reasoning capabilities
  • Moderate cost
  • Best for: General purpose, most use cases

openai/o4-mini:

  • Fast processing
  • Lower cost
  • Good for simple tasks
  • Best for: High-volume operations, simple classification

openai/gpt-4.1:

  • High-quality generation
  • Strong reasoning
  • Content creation
  • Best for: Sequences, content generation

openai/gpt-4.1-mini:

  • Faster than gpt-4.1
  • Lower cost
  • Good quality
  • Best for: Classifiers, simple generation

openai/gpt-4.1-nano:

  • Ultra-fast
  • Very low cost
  • Basic capabilities
  • Best for: Simple classification, high-volume

gemini/gemini-2.0-flash:

  • Very fast
  • Cost-effective
  • Good quality
  • Best for: Default choice for most pipelines

gemini/gemini-2.5-pro:

  • Premium quality
  • Advanced reasoning
  • Multimodal capabilities
  • Best for: Complex tasks, high-value operations

gemini/gemini-2.5-pro-preview:

  • Latest features
  • Experimental capabilities
  • May change
  • Best for: Testing new features

deepseek/r1:

  • Technical content
  • Code generation
  • Mathematical reasoning
  • Best for: Technical sequences, developer content

Data Classification:

  • Start with: openai/o4-mini
  • Upgrade to: openai/gpt-4.1-mini for better accuracy
  • Premium: gemini/gemini-2.5-pro

Structured Data Extraction:

  • Start with: openai/o4-mini or gemini/gemini-2.0-flash
  • Upgrade to: openai/gpt-4.1 for complex extraction
  • Latest: openai/gpt-5 for cutting-edge capabilities

Complex Analysis (Agents):

  • Generation: gemini/gemini-2.0-flash
  • Validation: openai/o3

Content Generation (Sequences):

  • High quality: gemini/gemini-2.5-pro
  • Balanced: openai/gpt-4.1
  • Fast: gemini/gemini-2.0-flash

Simple Logic (Code):

  • No AI model needed (pure code)

Quality First:

  1. gemini/gemini-2.5-pro
  2. openai/o1
  3. openai/gpt-4.1

Speed First:

  1. openai/o4-mini
  2. gemini/gemini-2.0-flash
  3. openai/gpt-4.1-nano

Cost First:

  1. openai/o4-mini
  2. openai/gpt-4.1-nano
  3. gemini/gemini-2.0-flash

Balanced:

  1. openai/o3
  2. gemini/gemini-2.0-flash
  3. openai/gpt-4.1-mini

High Volume (greater than 1000 records/day):

  • openai/o4-mini — Fast and economical
  • gemini/gemini-2.0-flash — Good balance

Medium Volume (100-1000 records/day):

  • openai/o3 — Balanced quality
  • gemini/gemini-2.5-pro — If quality critical

Low Volume (less than 100 records/day):

  • Any model works
  • Choose based on quality needs

Classifier:

kind: Classifier
spec:
classifier:
llmModel: openai/o4-mini

StructuredData:

kind: StructuredData
spec:
structuredData:
llmModel: openai/gpt-4.1

Agent:

kind: Agent
spec:
agent:
agentDef:
llmModel: gemini/gemini-2.0-flash
validationLlmModel: openai/o3
enableValidation: true

Sequence:

kind: Sequence
spec:
llmModel: gemini/gemini-2.5-pro
  1. Go to pipeline Generator/Classifier/Agent/StructuredData tab
  2. Find LLM Model selector
  3. Choose from dropdown
  4. Save changes
  5. Compile and deploy new version

(Approximate, normalized)

ModelRelative Cost
openai/o4-mini1x (baseline)
openai/gpt-4.1-nano1x
gemini/gemini-2.0-flash1.5x
openai/o33x
openai/gpt-4.1-mini4x
openai/gpt-4.18x
gemini/gemini-2.5-pro10x
openai/o115x

For Classifiers:

Start with: openai/o4-mini (1x cost)
Test accuracy
If insufficient: openai/gpt-4.1-mini (4x cost)

For Agents:

Generation: gemini/gemini-2.0-flash (1.5x)
Validation: openai/o3 (3x)
Or disable validation for lower cost

For Sequences:

Testing: gemini/gemini-2.0-flash (1.5x)
Production: gemini/gemini-2.5-pro (10x) if quality critical
Or: openai/gpt-4.1 (8x) for balance

Fastest:

  1. openai/o4-mini
  2. openai/gpt-4.1-nano
  3. gemini/gemini-2.0-flash

Moderate:

  1. openai/o3
  2. openai/gpt-4.1-mini
  3. deepseek/r1

Slower:

  1. openai/gpt-4.1
  2. gemini/gemini-2.5-pro
  3. openai/o1

Highest:

  1. openai/o1
  2. gemini/gemini-2.5-pro
  3. openai/gpt-4.1

Good:

  1. openai/o3
  2. openai/gpt-4.1-mini
  3. gemini/gemini-2.0-flash

Basic:

  1. openai/o4-mini
  2. openai/gpt-4.1-nano

Agents can use a separate validation model to review outputs.

  • Catch errors in agent output
  • Enforce schema compliance
  • Verify logic consistency
  • Provide feedback for corrections

High-Quality Validation:

Generation: gemini/gemini-2.0-flash
Validation: openai/o3

Cost-Optimized:

Generation: gemini/gemini-2.0-flash
Validation: openai/o4-mini

Premium:

Generation: gemini/gemini-2.5-pro
Validation: openai/o1

Disable validation if:

  • Simple, well-defined outputs
  • Cost is a major concern
  • Speed is critical
  • Outputs rarely have errors

Keep enabled for:

  • Complex decision-making
  • Critical operations (merges, deletions)
  • Structured output requirements
  • High-value records

Test methodology:

  1. Select model
  2. Process 10-20 sample records
  3. Review outputs manually
  4. Check quality, accuracy, tone
  5. If insufficient, try next tier model
  6. Compare cost vs. quality benefit

Track:

  • Success rates
  • Error rates
  • Cost per record
  • Processing time

Adjust if:

  • High error rates → Upgrade model
  • Slow processing → Use faster model
  • High costs → Downgrade if quality acceptable

Problem: Model not in dropdown

Solutions:

  • Check pipeline kind compatibility
  • Verify account has access
  • Try alternate model
  • Contact support

Problem: Model producing bad results

Solutions:

  1. Review prompt quality
  2. Check input data completeness
  3. Try higher-tier model
  4. Add validation (agents)
  5. Improve prompt engineering

Problem: Model too expensive

Solutions:

  1. Use faster, cheaper model
  2. Process smaller batches
  3. Filter inputs before processing
  4. Disable validation if not needed
  5. Run only on high-value records